

Lecture 04: First-Order Logic

Part 1 of 2

Recap from Last Time

- A *propositional variable* is a variable that is either true or false.
- The *propositional connectives* are as follows:

- A *propositional variable* is a variable that is either true or false.
- The *propositional connectives* are as follows:

- A *propositional variable* is a variable that is either true or false.
- The *propositional connectives* are as follows:

$$\rightarrow$$
 \land \top \neg \lor \bot \leftrightarrow

implication ("if **P**, then **Q**")

- A *propositional variable* is a variable that is either true or false.
- The *propositional connectives* are as follows:

$$\rightarrow$$
 Λ \top \neg \vee \bot \leftrightarrow

- A *propositional variable* is a variable that is either true or false.
- The *propositional connectives* are as follows:

$$\rightarrow$$
 Λ \top \neg \vee \bot \leftrightarrow

conjunction ("**P** and **Q**")

- A *propositional variable* is a variable that is either true or false.
- The *propositional connectives* are as follows:

$$\rightarrow$$
 \land \top \neg \lor \downarrow \leftrightarrow

- A *propositional variable* is a variable that is either true or false.
- The *propositional connectives* are as follows:

$$\rightarrow$$
 Λ **T** \neg V \perp \leftrightarrow

truth

- A *propositional variable* is a variable that is either true or false.
- The *propositional connectives* are as follows:

$$\rightarrow$$
 \land \top \neg \lor \checkmark \rightarrow

- A *propositional variable* is a variable that is either true or false.
- The *propositional connectives* are as follows:

$$\rightarrow$$
 Λ \top \neg V \perp \leftrightarrow

negation ("not P")

- A *propositional variable* is a variable that is either true or false.
- The *propositional connectives* are as follows:

$$\rightarrow$$
 \wedge \top \neg \mathbf{V} \perp \leftrightarrow

- A *propositional variable* is a variable that is either true or false.
- The *propositional connectives* are as follows:

$$\rightarrow$$
 \wedge \top \neg \mathbf{V} \perp \leftrightarrow

disjunction ("P or Q")

- A *propositional variable* is a variable that is either true or false.
- The *propositional connectives* are as follows:

$$\rightarrow$$
 Λ \top \neg V \bot \leftrightarrow

- A *propositional variable* is a variable that is either true or false.
- The *propositional connectives* are as follows:

falsity

- A *propositional variable* is a variable that is either true or false.
- The *propositional connectives* are as follows:

$$\rightarrow$$
 \wedge \top \neg \vee \perp \leftrightarrow

- A *propositional variable* is a variable that is either true or false.
- The *propositional connectives* are as follows:

$$\rightarrow$$
 \wedge \top \neg \vee \perp \leftrightarrow

biconditional ("**P** if and only if **Q**")

- A *propositional variable* is a variable that is either true or false.
- The *propositional connectives* are as follows:

- A *propositional variable* is a variable that is either true or false.
- The *propositional connectives* are as follows:

- A *propositional variable* is a variable that is either true or false.
- The *propositional connectives* are as follows:

- A *propositional variable* is a variable that is either true or false.
- The *propositional connectives* are as follows:

- A *propositional variable* is a variable that is either true or false.
- The *propositional connectives* are as follows:

- A *propositional variable* is a variable that is either true or false.
- The *propositional connectives* are as follows:

- A *propositional variable* is a variable that is either true or false.
- The *propositional connectives* are as follows:

- A *propositional variable* is a variable that is either true or false.
- The *propositional connectives* are as follows:

- A *propositional variable* is a variable that is either true or false.
- The *propositional connectives* are as follows:

- A *propositional variable* is a variable that is either true or false.
- The *propositional connectives* are as follows:

Operator Precedence

• How do we parse this statement?

$$\neg x \to y \lor z \to x \lor y \land z$$

• Operator precedence for propositional logic:

- All operators are right-associative.
- We can use parentheses to disambiguate.

Operator Precedence

• How do we parse this statement?

$$\neg x \to y \lor z \to x \lor y \land z$$

• Operator precedence for propositional logic:

- All operators are right-associative.
- We can use parentheses to disambiguate.

Operator Precedence

• How do we parse this statement?

$$\neg x \to y \lor z \to x \lor y \land z$$

• Operator precedence for propositional logic:

- All operators are right-associative.
- We can use parentheses to disambiguate.

• Suppose we want to prove the following statement:

"If x + y = 16, then $x \ge 8$ or $y \ge 8$ "

• Suppose we want to prove the following statement:

"If x + y = 16, then $x \ge 8$ or $y \ge 8$ "

$x + y = 16 \rightarrow x \ge 8 \ \forall \ y \ge 8$

• Suppose we want to prove the following statement:

"If x + y = 16, then $x \ge 8$ or $y \ge 8$ "

$$x + y = 16 \rightarrow x \ge 8 \lor y \ge 8$$

• Suppose we want to prove the following statement:

"If x + y = 16, then $x \ge 8$ or $y \ge 8$ "

 $\neg(x \ge 8 \lor y \ge 8) \rightarrow \neg(x + y = 16)$

• Suppose we want to prove the following statement:

"If x + y = 16, then $x \ge 8$ or $y \ge 8$ "

$$\neg(x \ge 8 \lor y \ge 8) \rightarrow \neg(x + y = 16)$$
• Suppose we want to prove the following statement:

"If x + y = 16, then $x \ge 8$ or $y \ge 8$ "

$$\neg(x \ge 8 \lor y \ge 8) \rightarrow \neg(x + y = 16)$$

• Suppose we want to prove the following statement:

"If x + y = 16, then $x \ge 8$ or $y \ge 8$ "

$\neg(x \geq 8 \lor y \geq 8) \rightarrow x + y \neq 16$

• Suppose we want to prove the following statement:

"If x + y = 16, then $x \ge 8$ or $y \ge 8$ "

$\neg(x \geq 8 \lor y \geq 8) \rightarrow x + y \neq 16$

• Suppose we want to prove the following statement:

"If x + y = 16, then $x \ge 8$ or $y \ge 8$ "

 $\neg (x \ge 8 \lor y \ge 8) \rightarrow x + y \neq 16$

• Suppose we want to prove the following statement:

"If x + y = 16, then $x \ge 8$ or $y \ge 8$ "

 $\neg(x \geq 8) \land \neg(y \geq 8) \rightarrow x + y \neq 16$

• Suppose we want to prove the following statement:

"If x + y = 16, then $x \ge 8$ or $y \ge 8$ "

$$\neg(x \ge 8) \land \neg(y \ge 8) \rightarrow x + y \neq 16$$

• Suppose we want to prove the following statement:

"If x + y = 16, then $x \ge 8$ or $y \ge 8$ "

 $\neg(x \geq 8) \land \neg(y \geq 8) \rightarrow x + y \neq 16$

• Suppose we want to prove the following statement:

"If x + y = 16, then $x \ge 8$ or $y \ge 8$ "

$$x < 8 \land \neg (y \ge 8) \rightarrow x + y \neq 16$$

• Suppose we want to prove the following statement:

"If x + y = 16, then $x \ge 8$ or $y \ge 8$ "

$$x < 8 \land \neg (y \ge 8) \rightarrow x + y \neq 16$$

• Suppose we want to prove the following statement:

"If x + y = 16, then $x \ge 8$ or $y \ge 8$ "

 $x < 8 \land \neg (y \ge 8) \rightarrow x + y \neq 16$

• Suppose we want to prove the following statement:

"If x + y = 16, then $x \ge 8$ or $y \ge 8$ "

$$x < 8 \land y < 8 \rightarrow x + y \neq 16$$

• Suppose we want to prove the following statement:

"If x + y = 16, then $x \ge 8$ or $y \ge 8$ "

$$x < 8 \land y < 8 \rightarrow x + y \neq 16$$

• Suppose we want to prove the following statement:

"If x + y = 16, then $x \ge 8$ or $y \ge 8$ "

$$x < 8 \land y < 8 \rightarrow x + y \neq 16$$

"If x < 8 and y < 8, then $x + y \neq 16$ "

Theorem: If x + y = 16, then $x \ge 8$ or $y \ge 8$.

Proof: We will prove the contrapositive, namely, that if x < 8 and y < 8, then $x + y \neq 16$.

Pick *x* and *y* where x < 8 and y < 8. We want to show that $x + y \neq 16$. To see this, note that

$$x + y < 8 + y
 < 8 + 8
 = 16.$$

This means that x + y < 16, so $x + y \neq 16$, which is what we needed to show.

(See end previous lecture's slides for additional examples and practice.)

New Stuff!

First-Order Logic

What is First-Order Logic?

- **First-order logic** is a logical system for reasoning about properties of objects.
- Augments the logical connectives from propositional logic with
 - predicates that describe properties of objects,
 - *functions* that map objects to one another, and
 - *quantifiers* that allow us to reason about multiple objects.

Some Examples

$Likes(You, Eggs) \land Likes(You, Tomato) \rightarrow Likes(You, Shakshuka)$

> These blue terms are called *constant symbols*. Unlike propositional variables, they refer to *objects*, not *propositions*.

> The red things that look like function calls are called *predicates*. Predicates take objects as arguments and evaluate to true or false.

> What remains are traditional propositional connectives. Because each predicate evaluates to true or false, we can connect the truth values of predicates using normal propositional connectives.

Reasoning about Objects

- To reason about objects, first-order logic uses predicates.
- Examples:

Cute(??)

Reasoning about Objects

- To reason about objects, first-order logic uses predicates.
- Examples:

Cute(Quokka)

ArgueIncessantly(Democrats, Republicans)

- Applying a predicate to arguments produces a proposition, which is either true or false.
- Typically, when you're working in FOL, you'll have a list of predicates, what they stand for, and how many arguments they take. It'll be given separately than the formulas you write.

First-Order Formulas

• Formulas in first-order logic can be constructed from predicates applied to objects:

 $Cute(a) \rightarrow Quokka(a) \lor Kitty(a) \lor Puppy(a)$

 $Succeeds(You) \leftrightarrow Practices(You)$

 $x < 8 \rightarrow x < 137$

The less-than sign is just another predicate. Binary predicates are sometimes written in *infix notation* this way.

Numbers are not "built in" to first-order logic. They're constant symbols just like "You" and "a" above.

Equality

- First-order logic is equipped with a special predicate = that says whether two objects are equal to one another.
- Equality is a part of first-order logic, just as \rightarrow and \neg are.
- Examples:

TomMarvoloRiddle = LordVoldemort MorningStar = EveningStar

• Equality can only be applied to **objects**; to state that two **propositions** are equal, use \leftrightarrow .

Let's see some more examples.

FavoriteMovieOf(You) ≠ FavoriteMovieOf(Date) ∧ StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date)) FavoriteMovieOf(You) ≠ FavoriteMovieOf(Date) ∧ StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date)) FavoriteMovieOf(You) ≠ FavoriteMovieOf(Date) ∧ StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))
> These purple terms are *functions*. Functions take objects as input and produce objects as output.

Functions

- First-order logic allows *functions* that return objects associated with other objects.
- Examples:

ColorOf(Money) MedianOf(x, y, z) x + y

- As with predicates, functions can take in any number of arguments, but always return a single value.
- Functions evaluate to *objects*, not *propositions*.

Objects and Propositions

- When working in first-order logic, be careful to keep objects (actual things) and propositions (true or false) separate.
- You cannot apply connectives to objects: $Venus \rightarrow TheSun$
- You cannot apply functions to propositions: *StarOf(IsRed(Sun) ∧ IsGreen(Mars)*)
- Ever get confused? *Just ask!*

The Type-Checking Table

	operate on	and produce
Connectives $(\leftrightarrow, \Lambda, \text{ etc.}) \dots$	propositions	a proposition
Predicates (=, etc.)	objects	a proposition
Functions	objects	an object

One last (and major) change

Some bear is curious.

Some bear is curious. ∃b. (*Bear*(b) ∧ *Curious*(b))

• A statement of the form

∃*x***.** *some-formula*

is true when there exists a choice object where **some-formula** is true when that object is plugged in for x.

• Examples:

 $\exists x. (Even(x) \land Prime(x))$ $\exists x. (TallerThan(x, me) \land WeighsLessThan(x, me))$ $(\exists w. Will(w)) → (\exists x. Way(x))$

• Note the two ways of applying the \exists !

 $\exists x. Smiling(x)$

 $\exists x. Smiling(x)$

The Existential Quantifier

 $(\exists x. Smiling(x)) \rightarrow (\exists y. WearingHat(y))$

The Existential Quantifier

 $(\exists x. Smiling(x)) \rightarrow (\exists y. WearingHat(y))$

The Existential Quantifier

 $(\exists x. Smiling(x)) \rightarrow (\exists y. WearingHat(y))$

Fun with Edge Cases

 $\exists x. Smiling(x)$

Fun with Edge Cases

Existentially-quantified statements are false in an empty world, since nothing exists, period!

∃x. *Smiling*(x)

Some Technical Details

- Each quantifier has two parts:
 - the variable that is introduced, and
 - the statement that's being quantified.
- The variable introduced is scoped just to the statement being quantified.

 $(\exists x. Loves(You, x)) \land (\exists y. Loves(y, You))$

- Each quantifier has two parts:
 - the variable that is introduced, and
 - the statement that's being quantified.
- The variable introduced is scoped just to the statement being quantified.

 $(\exists x. Loves(You, x)) \land (\exists y. Loves(y, You))$

- Each quantifier has two parts:
 - the variable that is introduced, and
 - the statement that's being quantified.
- The variable introduced is scoped just to the statement being quantified.

 $(\exists x. Loves(You, x)) \land (\exists y. Loves(y, You))$

- Each quantifier has two parts:
 - the variable that is introduced, and
 - the statement that's being quantified.
- The variable introduced is scoped just to the statement being quantified.

 $(\exists x. Loves(You, x)) \land (\exists x. Loves(x, You))$

- Each quantifier has two parts:
 - the variable that is introduced, and
 - the statement that's being quantified.
- The variable introduced is scoped just to the statement being quantified.

 $(\exists x. Loves(You, x)) \land (\exists x. Loves(x, You))$

A different variable, also named x, just lives here.

Operator Precedence (Again)

- When writing out a formula in first-order logic, quantifiers have precedence just below ¬.
- The statement

 $\exists x. \ P(x) \land R(x) \land Q(x)$

is parsed like this:

 $(\exists \mathbf{x}. P(\mathbf{x})) \land (R(\mathbf{x}) \land Q(\mathbf{x}))$

- This is syntactically invalid because the variable *x* is out of scope in the back half of the formula.
- To ensure that x is properly quantified, explicitly put parentheses around the region you want to quantify:

 $\exists x. (P(x) \land R(x) \land Q(x))$

THIS IS A LOT!!

Time out for cuteness overload.

Okay, back to CS103!

"For any natural number n, n is even if and only if n^2 is even"

"For any natural number *n*, *n* is even if and only if *n*² is even"

 $\forall n. (n \in \mathbb{N} \rightarrow (Even(n) \leftrightarrow Even(n^2)))$

"For any natural number n, n is even if and only if n^2 is even"

 $\forall n. \ (n \in \mathbb{N} \rightarrow (Even(n) \leftrightarrow Even(n^2)))$

∀ is the universal quantifier and says "for all choices of n, the following is true."

• A statement of the form

∀x. some-formula

is true when, for every choice of *x*, the statement **some-formula** is true when *x* is plugged into it.

- Examples:
 - $\forall p. \ (Puppy(p) \rightarrow Cute(p))$

 $\forall a. (EatsPlants(a) \lor EatsAnimals(a))$

 $Tallest(SultanK\"osen) \rightarrow$

 $\forall x. (SultanK\"osen \neq x \rightarrow ShorterThan(x, SultanK\"osen))$

 $\forall x. Smiling(x)$

 $\forall x. Smiling(x)$

Fun with Edge Cases

 $\forall x. Smiling(x)$

Fun with Edge Cases

Universally-quantified statements are said to be *vacuously true* in empty worlds.

 $\forall x. Smiling(x)$

Translating into First-Order Logic

Translating Into Logic

- First-order logic is an excellent tool for manipulating definitions and theorems to learn more about them.
- Need to take a negation? Translate your statement into FOL, negate it, then translate it back.
- Want to prove something by contrapositive? Translate your implication into FOL, take the contrapositive, then translate it back.

Translating Into Logic

• When translating from English into firstorder logic, we recommend that you

think of first-order logic as a mathematical programming language.

• Your goal is to learn how to combine basic concepts (quantifiers, connectives, etc.) together in ways that say what you mean.

- Smiling(x), which states that x is smiling, and
- *WearingHat*(*x*), which states that *x* is wearing a hat,

write a formula in first-order logic that says

- Smiling(x), which states that x is smiling, and
- *WearingHat*(*x*), which states that *x* is wearing a hat,

write a formula in first-order logic that says

- (A) $\exists x. WearingHat(Smiling(x))$
- (B) $\exists x. (Smiling(x) = WearingHat(x))$
- (C) $\exists x. (Smiling(x) \land WearingHat(x))$
- (D) $\exists x. (Smiling(x) \rightarrow WearingHat(x))$

- Smiling(x), which states that x is smiling, and
- *WearingHat*(*x*), which states that *x* is wearing a hat,

write a formula in first-order logic that says

- Smiling(x), which states that x is smiling, and
- *WearingHat*(*x*), which states that *x* is wearing a hat,

write a formula in first-order logic that says

- (A) $\exists x. Smiling(Person(x))$
- (B) $\exists x. (Smiling(x) = WearingHat(x))$
- (C) $\exists x. (Smiling(x) \land WearingHat(x))$
- (D) $\exists x. (Smiling(x) \rightarrow WearingHat(x))$

"Some smiling person wears a hat." $\exists x. (Smiling(x) \land WearingHat(x))$ $\exists x. (Smiling(x) \rightarrow WearingHat(x))$

"Some smiling person wears a hat." $\exists x. (Smiling(x) \land WearingHat(x))$ $\exists x. (Smiling(x) \rightarrow WearingHat(x))$

"Some smiling person wears a hat." False $\exists x. (Smiling(x) \land WearingHat(x))$ $\exists x. (Smiling(x) \rightarrow WearingHat(x))$

"Some P is a Q"

translates as

 $\exists x. (P(x) \land Q(x))$

Useful Intuition:

Existentially-quantified statements are false unless there's a positive example.

$\exists x. (P(x) \land Q(x))$

If x is an example, it *must* have property P on top of property Q.

- Smiling(x), which states that x is smiling, and
- *WearingHat*(*x*), which states that *x* is wearing a hat,

write a sentence in first-order logic that says

every smiling person wears a hat.

 $\forall x. (Smiling(x) \rightarrow WearingHat(x))$ **True**

"All P's are Q's"

translates as

 $\forall x. \ (P(x) \rightarrow Q(x))$
Useful Intuition:

Universally-quantified statements are true unless there's a counterexample.

$\forall x. \ (P(x) \rightarrow Q(x))$

If x is a counterexample, it must have property P but not have property Q.

Good Pairings

• The \forall quantifier *usually* is paired with \rightarrow .

 $\forall x. \ (P(x) \rightarrow Q(x))$

• The \exists quantifier *usually* is paired with \land .

$\exists x. (P(x) \land Q(x))$

- In the case of ∀, the → connective prevents the statement from being *false* when speaking about some object you don't care about.
- In the case of \exists , the \land connective prevents the statement from being *true* when speaking about some object you don't care about.

Quantifiers in the Wild

Center for Automated Reasoning at Stanford University

theorem prover

Next Time

- First-Order Translations
 - How do we translate from English into first-order logic?
- Quantifier Orderings
 - How do you select the order of quantifiers in first-order logic formulas?
- Negating Formulas
 - How do you mechanically determine the negation of a first-order formula?
- Expressing Uniqueness
 - How do we say there's just one object of a certain type?