

Lecture 04:
First-Order Logic

CS103CS103

Winter 2025Winter 2025

Part 1 of 2

Recap from Last Time

Recap So Far
● A propositional variable is a variable that is either

true or false.
● The propositional connectives are as follows:

Recap So Far
● A propositional variable is a variable that is either

true or false.
● The propositional connectives are as follows:

 → ∧ ⊤ ¬ ∨ ⊥ ↔

Recap So Far
● A propositional variable is a variable that is either

true or false.
● The propositional connectives are as follows:

 → ∧ ⊤ ¬ ∨ ⊥ ↔

implication (“if P, then Q”)

Recap So Far
● A propositional variable is a variable that is either

true or false.
● The propositional connectives are as follows:

 → ∧ ⊤ ¬ ∨ ⊥ ↔

Recap So Far
● A propositional variable is a variable that is either

true or false.
● The propositional connectives are as follows:

 → ∧ ⊤ ¬ ∨ ⊥ ↔

conjunction (“P and Q”)

Recap So Far
● A propositional variable is a variable that is either

true or false.
● The propositional connectives are as follows:

 → ∧ ⊤ ¬ ∨ ⊥ ↔

Recap So Far
● A propositional variable is a variable that is either

true or false.
● The propositional connectives are as follows:

 → ∧ ⊤ ¬ ∨ ⊥ ↔

truth

Recap So Far
● A propositional variable is a variable that is either

true or false.
● The propositional connectives are as follows:

 → ∧ ⊤ ¬ ∨ ⊥ ↔

Recap So Far
● A propositional variable is a variable that is either

true or false.
● The propositional connectives are as follows:

 → ∧ ⊤ ¬ ∨ ⊥ ↔

negation (“not P”)

Recap So Far
● A propositional variable is a variable that is either

true or false.
● The propositional connectives are as follows:

 → ∧ ⊤ ¬ ∨ ⊥ ↔

Recap So Far
● A propositional variable is a variable that is either

true or false.
● The propositional connectives are as follows:

 → ∧ ⊤ ¬ ∨ ⊥ ↔

disjunction (“P or Q”)

Recap So Far
● A propositional variable is a variable that is either

true or false.
● The propositional connectives are as follows:

 → ∧ ⊤ ¬ ∨ ⊥ ↔

Recap So Far
● A propositional variable is a variable that is either

true or false.
● The propositional connectives are as follows:

 → ∧ ⊤ ¬ ∨ ⊥ ↔

falsity

Recap So Far
● A propositional variable is a variable that is either

true or false.
● The propositional connectives are as follows:

 → ∧ ⊤ ¬ ∨ ⊥ ↔

Recap So Far
● A propositional variable is a variable that is either

true or false.
● The propositional connectives are as follows:

 → ∧ ⊤ ¬ ∨ ⊥ ↔

biconditional (“P if and only if Q”)

Recap So Far
● A propositional variable is a variable that is either

true or false.
● The propositional connectives are as follows:

 → ∧ ⊤ ¬ ∨ ⊥ ↔

p q p → q

T T

F F
 F T
 T F

Recap So Far
● A propositional variable is a variable that is either

true or false.
● The propositional connectives are as follows:

 → ∧ ⊤ ¬ ∨ ⊥ ↔

T
p q p → q

T T

F F
 F T
 T F

Recap So Far
● A propositional variable is a variable that is either

true or false.
● The propositional connectives are as follows:

 → ∧ ⊤ ¬ ∨ ⊥ ↔

T
p q p → q

T T

F F
TF T
 T F

Recap So Far
● A propositional variable is a variable that is either

true or false.
● The propositional connectives are as follows:

 → ∧ ⊤ ¬ ∨ ⊥ ↔

T
p q p → q

T T

F F
TF T
FT F

Recap So Far
● A propositional variable is a variable that is either

true or false.
● The propositional connectives are as follows:

 → ∧ ⊤ ¬ ∨ ⊥ ↔

T
p q p → q

T T T

F F
TF T
FT F

Recap So Far
● A propositional variable is a variable that is either

true or false.
● The propositional connectives are as follows:

 → ∧ ⊤ ¬ ∨ ⊥ ↔

T
p q p → q

T T T

F F
TF T
FT F

negation
of p → q?

Recap So Far
● A propositional variable is a variable that is either

true or false.
● The propositional connectives are as follows:

 → ∧ ⊤ ¬ ∨ ⊥ ↔

T
p q p → q

T T T

F F
TF T
FT F

negation
of p → q?

Answer at

https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev

Recap So Far
● A propositional variable is a variable that is either

true or false.
● The propositional connectives are as follows:

 → ∧ ⊤ ¬ ∨ ⊥ ↔

T
p q p → q

T T T

F F
TF T
FT F

p ∧ ¬q

Negation of
p → q

Recap So Far
● A propositional variable is a variable that is either

true or false.
● The propositional connectives are as follows:

 → ∧ ⊤ ¬ ∨ ⊥ ↔

T
p q p → q

T T T

F F
TF T
FT F

p ∧ ¬q

T

Negation of
p → q

Recap So Far
● A propositional variable is a variable that is either

true or false.
● The propositional connectives are as follows:

 → ∧ ⊤ ¬ ∨ ⊥ ↔

T
p q p → q

T T T

F F
TF T
FT F

p ∧ ¬q

T
F
F

F

Negation of
p → q

Operator Precedence
● How do we parse this statement?

¬x → y ∨ z → x ∨ y ∧ z
● Operator precedence for propositional logic:

¬
∧
∨
→
↔

● All operators are right-associative.
● We can use parentheses to disambiguate.

Operator Precedence
● How do we parse this statement?

¬x → y ∨ z → x ∨ y ∧ z
● Operator precedence for propositional logic:

 ¬
∧
∨
→
↔

● All operators are right-associative.
● We can use parentheses to disambiguate.

¬ binds to whatever
immediately follows it

Operator Precedence
● How do we parse this statement?

¬x → y ∨ z → x ∨ y ∧ z
● Operator precedence for propositional logic:

¬
 ∧
 ∨

→
↔

● All operators are right-associative.
● We can use parentheses to disambiguate.

∧ and ∨ bind
more tightly than →

Why All This Matters

Why All This Matters
● Suppose we want to prove the following

statement:
“If x + y = 16, then x ≥ 8 or y ≥ 8”

Why All This Matters
● Suppose we want to prove the following

statement:
“If x + y = 16, then x ≥ 8 or y ≥ 8”

x + y = 16 → x ≥ 8 ∨ y ≥ 8

Why All This Matters
● Suppose we want to prove the following

statement:
“If x + y = 16, then x ≥ 8 or y ≥ 8”

x + y = 16 → x ≥ 8 ∨ y ≥ 8

Why All This Matters
● Suppose we want to prove the following

statement:
“If x + y = 16, then x ≥ 8 or y ≥ 8”

¬(x ≥ 8 ∨ y ≥ 8) → ¬(x + y = 16)

Why All This Matters
● Suppose we want to prove the following

statement:
“If x + y = 16, then x ≥ 8 or y ≥ 8”

¬(x ≥ 8 ∨ y ≥ 8) → ¬(x + y = 16)

Why All This Matters
● Suppose we want to prove the following

statement:
“If x + y = 16, then x ≥ 8 or y ≥ 8”

¬(x ≥ 8 ∨ y ≥ 8) → ¬(x + y = 16)

Why All This Matters
● Suppose we want to prove the following

statement:
“If x + y = 16, then x ≥ 8 or y ≥ 8”

¬(x ≥ 8 ∨ y ≥ 8) → x + y ≠ 16

Why All This Matters
● Suppose we want to prove the following

statement:
“If x + y = 16, then x ≥ 8 or y ≥ 8”

¬(x ≥ 8 ∨ y ≥ 8) → x + y ≠ 16

Why All This Matters
● Suppose we want to prove the following

statement:
“If x + y = 16, then x ≥ 8 or y ≥ 8”

¬(x ≥ 8 ∨ y ≥ 8) → x + y ≠ 16

Why All This Matters
● Suppose we want to prove the following

statement:
“If x + y = 16, then x ≥ 8 or y ≥ 8”

¬(x ≥ 8) ∧ ¬(y ≥ 8) → x + y ≠ 16

Why All This Matters
● Suppose we want to prove the following

statement:
“If x + y = 16, then x ≥ 8 or y ≥ 8”

¬(x ≥ 8) ∧ ¬(y ≥ 8) → x + y ≠ 16

Why All This Matters
● Suppose we want to prove the following

statement:
“If x + y = 16, then x ≥ 8 or y ≥ 8”

¬(x ≥ 8) ∧ ¬(y ≥ 8) → x + y ≠ 16

Why All This Matters
● Suppose we want to prove the following

statement:
“If x + y = 16, then x ≥ 8 or y ≥ 8”

x < 8 ∧ ¬(y ≥ 8) → x + y ≠ 16

Why All This Matters
● Suppose we want to prove the following

statement:
“If x + y = 16, then x ≥ 8 or y ≥ 8”

x < 8 ∧ ¬(y ≥ 8) → x + y ≠ 16

Why All This Matters
● Suppose we want to prove the following

statement:
“If x + y = 16, then x ≥ 8 or y ≥ 8”

x < 8 ∧ ¬(y ≥ 8) → x + y ≠ 16

Why All This Matters
● Suppose we want to prove the following

statement:
“If x + y = 16, then x ≥ 8 or y ≥ 8”

x < 8 ∧ y < 8 → x + y ≠ 16

Why All This Matters
● Suppose we want to prove the following

statement:
“If x + y = 16, then x ≥ 8 or y ≥ 8”

x < 8 ∧ y < 8 → x + y ≠ 16

Why All This Matters
● Suppose we want to prove the following

statement:
“If x + y = 16, then x ≥ 8 or y ≥ 8”

x < 8 ∧ y < 8 → x + y ≠ 16

“If x < 8 and y < 8, then x + y ≠ 16”

Theorem: If x + y = 16, then x ≥ 8 or y ≥ 8.

Proof: We will prove the contrapositive, namely, that
if x < 8 and y < 8, then x + y ≠ 16.

Pick x and y where x < 8 and y < 8. We want to show
that x + y ≠ 16. To see this, note that

x + y < 8 + y
 < 8 + 8

= 16.

This means that x + y < 16, so x + y ≠ 16, which is
what we needed to show. ■

Why All This Matters

(See end previous lecture’s slides for
additional examples and practice.)

New Stuff!

First-Order Logic

What is First-Order Logic?
● First-order logic is a logical system for

reasoning about properties of objects.
● Augments the logical connectives from

propositional logic with
● predicates that describe properties of

objects,
● functions that map objects to one another,

and
● quantifiers that allow us to reason about

multiple objects.

Some Examples

Likes(You, Eggs) ∧ Likes(You, Tomato) → Likes(You, Shakshuka)

Learns(You, History) ∨ ForeverRepeats(You, History)

DrinksTooMuch(Me) ∧ IsAnIssue(That) ∧ IsOkay(Me)

Likes(You, Eggs) ∧ Likes(You, Tomato) → Likes(You, Shakshuka)

Learns(You, History) ∨ ForeverRepeats(You, History)

In(MyHeart, Havana) ∧ TookBackTo(Him, Me, EastAtlanta)

Likes(You, Eggs) ∧ Likes(You, Tomato) → Likes(You, Shakshuka)

Learns(You, History) ∨ ForeverRepeats(You, History)

In(MyHeart, Havana) ∧ TookBackTo(Him, Me, EastAtlanta)

Likes(You, Eggs) ∧ Likes(You, Tomato) → Likes(You, Shakshuka)

Learns(You, History) ∨ ForeverRepeats(You, History)

In(MyHeart, Havana) ∧ TookBackTo(Him, Me, EastAtlanta)

These blue terms are called
constant symbols. Unlike
propositional variables, they

refer to objects, not
propositions.

Likes(You, Eggs) ∧ Likes(You, Tomato) → Likes(You, Shakshuka)

Learns(You, History) ∨ ForeverRepeats(You, History)

In(MyHeart, Havana) ∧ TookBackTo(Him, Me, EastAtlanta)

Likes(You, Eggs) ∧ Likes(You, Tomato) → Likes(You, Shakshuka)

Learns(You, History) ∨ ForeverRepeats(You, History)

In(MyHeart, Havana) ∧ TookBackTo(Him, Me, EastAtlanta)

The red things that look
like function calls are called
predicates. Predicates take
objects as arguments and
evaluate to true or false.

Likes(You, Eggs) ∧ Likes(You, Tomato) → Likes(You, Shakshuka)

Learns(You, History) ∨ ForeverRepeats(You, History)

In(MyHeart, Havana) ∧ TookBackTo(Him, Me, EastAtlanta)

Likes(You, Eggs) ∧ Likes(You, Tomato) → Likes(You, Shakshuka)

Learns(You, History) ∨ ForeverRepeats(You, History)

In(MyHeart, Havana) ∧ TookBackTo(Him, Me, EastAtlanta)

What remains are traditional propositional
connectives. Because each predicate
evaluates to true or false, we can

connect the truth values of predicates
using normal propositional connectives.

Reasoning about Objects
● To reason about objects, first-order logic uses

predicates.
● Examples:

Cute(??)

Reasoning about Objects
● To reason about objects, first-order logic uses

predicates.
● Examples:

Cute(Quokka)
ArgueIncessantly(Democrats, Republicans)

● Applying a predicate to arguments produces a
proposition, which is either true or false.

● Typically, when you’re working in FOL, you’ll
have a list of predicates, what they stand for, and
how many arguments they take. It’ll be given
separately than the formulas you write.

First-Order Formulas
● Formulas in first-order logic can be constructed

from predicates applied to objects:
Cute(a) → Quokka(a) ∨ Kitty(a) ∨ Puppy(a)

Succeeds(You) ↔ Practices(You)
x < 8 → x < 137

The less-than sign is
just another predicate.
Binary predicates are
sometimes written in

infix notation this way.

Numbers are not “built
in” to first-order

logic. They’re constant
symbols just like “You”

and “a” above.

Equality
● First-order logic is equipped with a special

predicate = that says whether two objects are
equal to one another.

● Equality is a part of first-order logic, just as →
and ¬ are.

● Examples:
TomMarvoloRiddle = LordVoldemort

MorningStar = EveningStar
● Equality can only be applied to objects; to

state that two propositions are equal, use ↔.

Let's see some more examples.

FavoriteMovieOf(You) ≠ FavoriteMovieOf(Date) ∧
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))

FavoriteMovieOf(You) ≠ FavoriteMovieOf(Date) ∧
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))

FavoriteMovieOf(You) ≠ FavoriteMovieOf(Date) ∧
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))

FavoriteMovieOf(You) ≠ FavoriteMovieOf(Date) ∧
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))

FavoriteMovieOf(You) ≠ FavoriteMovieOf(Date) ∧
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))

These purple terms are
functions. Functions take

objects as input and
produce objects as output.

FavoriteMovieOf(You) ≠ FavoriteMovieOf(Date) ∧
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))

FavoriteMovieOf(You) ≠ FavoriteMovieOf(Date) ∧
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))

FavoriteMovieOf(You) ≠ FavoriteMovieOf(Date) ∧
StarOf(FavoriteMovieOf(You)) = StarOf(FavoriteMovieOf(Date))

Functions
● First-order logic allows functions that return

objects associated with other objects.
● Examples:

ColorOf(Money)
MedianOf(x, y, z)

x + y
● As with predicates, functions can take in any

number of arguments, but always return a single
value.

● Functions evaluate to objects, not propositions.

Objects and Propositions
● When working in first-order logic, be careful

to keep objects (actual things) and
propositions (true or false) separate.

● You cannot apply connectives to objects:
 ⚠ Venus → TheSun ⚠

● You cannot apply functions to propositions:
 ⚠ StarOf(IsRed(Sun) ∧ IsGreen(Mars)) ⚠

● Ever get confused? Just ask!

The Type-Checking Table

… operate on ... … and produce

Connectives
(↔, ∧, etc.) …

Predicates
(=, etc.) …

Functions …

propositions a proposition

a propositionobjects

objects an object

One last (and major) change

Some bear is curious.

Some bear is curious.

∃b. (Bear(b) ∧ Curious(b))

Some bear is curious.

∃b. (Bear(b) ∧ Curious(b))

∃ is the existential quantifier
and says “there is a choice of

b where the following is
true.”

The Existential Quantifier
● A statement of the form

∃x. some-formula
is true when there exists a choice object
where some-formula is true when that
object is plugged in for x.

● Examples:
∃x. (Even(x) ∧ Prime(x))
∃x. (TallerThan(x, me) ∧ WeighsLessThan(x, me))
(∃w. Will(w)) → (∃x. Way(x))

● Note the two ways of applying the ∃!

The Existential Quantifier

∃x. Smiling(x)

The Existential Quantifier

∃x. Smiling(x)

The Existential Quantifier

∃x. Smiling(x)

The Existential Quantifier

∃x. Smiling(x)

The Existential Quantifier

∃x. Smiling(x)

The Existential Quantifier

∃x. Smiling(x)

The Existential Quantifier

∃x. Smiling(x)

The Existential Quantifier

∃x. Smiling(x)

Since Smiling(x)
is true for some
choice of x, this

statement
evaluates to true.

The Existential Quantifier

∃x. Smiling(x)

Since Smiling(x)
is true for some
choice of x, this

statement
evaluates to true.

The Existential Quantifier

∃x. Smiling(x)

The Existential Quantifier

∃x. Smiling(x)

The Existential Quantifier

∃x. Smiling(x)

The Existential Quantifier

∃x. Smiling(x)

The Existential Quantifier

∃x. Smiling(x)

The Existential Quantifier

∃x. Smiling(x)

The Existential Quantifier

∃x. Smiling(x)

The Existential Quantifier

∃x. Smiling(x)

Since Smiling(x) is
not true for any
choice of x, this

statement evaluates
to false.

The Existential Quantifier

∃x. Smiling(x)

Since Smiling(x) is
not true for any
choice of x, this

statement evaluates
to false.

The Existential Quantifier

(∃x. Smiling(x)) → (∃y. WearingHat(y))

Answer at
https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev

The Existential Quantifier

(∃x. Smiling(x)) → (∃y. WearingHat(y))

The Existential Quantifier

(∃x. Smiling(x)) → (∃y. WearingHat(y))

Is this part of the
statement true or

false?

The Existential Quantifier

(∃x. Smiling(x)) → (∃y. WearingHat(y))

Is this part of the
statement true or

false?

The Existential Quantifier

(∃x. Smiling(x)) → (∃y. WearingHat(y))

Is this part of the
statement true or

false?

The Existential Quantifier

(∃x. Smiling(x)) → (∃y. WearingHat(y))

Is this part of the
statement true or

false?

The Existential Quantifier

(∃x. Smiling(x)) → (∃y. WearingHat(y))

Is this overall
statement true or

false?

The Existential Quantifier

(∃x. Smiling(x)) → (∃y. WearingHat(y))

Is this overall
statement true or

false?

 ∃x. Smiling(x)

Fun with Edge Cases

 ∃x. Smiling(x)

Fun with Edge Cases

Existentially-quantified
statements are false in an

empty world, since nothing
exists, period!

Some Technical Details

Variables and Quantifiers
● Each quantifier has two parts:

● the variable that is introduced, and
● the statement that's being quantified.

● The variable introduced is scoped just to
the statement being quantified.

(∃x. Loves(You, x)) ∧ (∃y. Loves(y, You))

Variables and Quantifiers
● Each quantifier has two parts:

● the variable that is introduced, and
● the statement that's being quantified.

● The variable introduced is scoped just to
the statement being quantified.

(∃x. Loves(You, x)) ∧ (∃y. Loves(y, You))

The variable x
just lives here.

The variable y
just lives here.

Variables and Quantifiers
● Each quantifier has two parts:

● the variable that is introduced, and
● the statement that's being quantified.

● The variable introduced is scoped just to
the statement being quantified.

(∃x. Loves(You, x)) ∧ (∃y. Loves(y, You))

Variables and Quantifiers
● Each quantifier has two parts:

● the variable that is introduced, and
● the statement that's being quantified.

● The variable introduced is scoped just to
the statement being quantified.

(∃x. Loves(You, x)) ∧ (∃x. Loves(x, You))

Variables and Quantifiers
● Each quantifier has two parts:

● the variable that is introduced, and
● the statement that's being quantified.

● The variable introduced is scoped just to
the statement being quantified.

(∃x. Loves(You, x)) ∧ (∃x. Loves(x, You))

The variable x
just lives here.

A different variable,
also named x, just

lives here.

Operator Precedence (Again)
● When writing out a formula in first-order logic,

quantifiers have precedence just below ¬.
● The statement

∃x. P(x) ∧ R(x) ∧ Q(x)
is parsed like this:

 ⚠ (∃x. P(x)) ∧ (R(x) ∧ Q(x)) ⚠
● This is syntactically invalid because the variable x is

out of scope in the back half of the formula.
● To ensure that x is properly quantified, explicitly put

parentheses around the region you want to quantify:
∃x. (P(x) ∧ R(x) ∧ Q(x))

THIS IS A LOT!!

Time out for cuteness overload.

Okay, back to CS103!

“For any natural number n,
n is even if and only if n2 is even”

∀n. (n ∈ ℕ → (Even(n) ↔ Even(n2)))

“For any natural number n,
n is even if and only if n2 is even”

∀n. (n ∈ ℕ → (Even(n) ↔ Even(n2)))

“For any natural number n,
n is even if and only if n2 is even”

∀n. (n ∈ ℕ → (Even(n) ↔ Even(n2)))

 ∀ is the universal quantifier
and says “for all choices of n,

the following is true.”

The Universal Quantifier
● A statement of the form

∀x. some-formula
is true when, for every choice of x, the statement
some-formula is true when x is plugged into it.

● Examples:
∀p. (Puppy(p) → Cute(p))
∀a. (EatsPlants(a) ∨ EatsAnimals(a))
Tallest(SultanKösen) →

∀x. (SultanKösen ≠ x → ShorterThan(x, SultanKösen))

The Universal Quantifier

∀x. Smiling(x)

The Universal Quantifier

∀x. Smiling(x)

The Universal Quantifier

∀x. Smiling(x)

The Universal Quantifier

∀x. Smiling(x)

The Universal Quantifier

∀x. Smiling(x)

The Universal Quantifier

∀x. Smiling(x)

The Universal Quantifier

∀x. Smiling(x)

The Universal Quantifier

∀x. Smiling(x)

Since Smiling(x)
is true for every
choice of x, this

statement
evaluates to true.

The Universal Quantifier

∀x. Smiling(x)

Since Smiling(x)
is true for every
choice of x, this

statement
evaluates to true.

The Universal Quantifier

∀x. Smiling(x)

The Universal Quantifier

∀x. Smiling(x)

The Universal Quantifier

∀x. Smiling(x)

The Universal Quantifier

∀x. Smiling(x)

The Universal Quantifier

∀x. Smiling(x)

Since Smiling(x) is
false for this choice

x, this statement
evaluates to false.

The Universal Quantifier

∀x. Smiling(x)

Since Smiling(x) is
false for this choice

x, this statement
evaluates to false.

The Universal Quantifier

(∀x. Smiling(x)) → (∀y. WearingHat(y))

Answer at
https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev

The Universal Quantifier

(∀x. Smiling(x)) → (∀y. WearingHat(y))

The Universal Quantifier

(∀x. Smiling(x)) → (∀y. WearingHat(y))

Is this part of the
statement true or

false?

The Universal Quantifier

(∀x. Smiling(x)) → (∀y. WearingHat(y))

Is this part of the
statement true or

false?

The Universal Quantifier

(∀x. Smiling(x)) → (∀y. WearingHat(y))

Is this part of the
statement true or

false?

The Universal Quantifier

(∀x. Smiling(x)) → (∀y. WearingHat(y))

Is this part of the
statement true or

false?

The Universal Quantifier

(∀x. Smiling(x)) → (∀y. WearingHat(y))

Is this overall
statement true or

false in this
scenario?

The Universal Quantifier

(∀x. Smiling(x)) → (∀y. WearingHat(y))

Is this overall
statement true or

false in this
scenario?

 ∀x. Smiling(x)

Fun with Edge Cases

 ∀x. Smiling(x)

Fun with Edge Cases

Universally-quantified
statements are said to be
vacuously true in empty

worlds.

Translating into First-Order Logic

Translating Into Logic
● First-order logic is an excellent tool for

manipulating definitions and theorems to
learn more about them.

● Need to take a negation? Translate your
statement into FOL, negate it, then
translate it back.

● Want to prove something by contrapositive?
Translate your implication into FOL, take
the contrapositive, then translate it back.

Translating Into Logic
● When translating from English into first-

order logic, we recommend that you
think of first-order logic as a
mathematical programming

language.
● Your goal is to learn how to combine

basic concepts (quantifiers, connectives,
etc.) together in ways that say what you
mean.

Using the predicates

 - Smiling(x), which states that x is smiling, and
 - WearingHat(x), which states that x is wearing a hat,

write a formula in first-order logic that says

some smiling person wears a hat.

How would you represent this in first-order logic?

Answer at
https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev

Using the predicates

 - Smiling(x), which states that x is smiling, and
 - WearingHat(x), which states that x is wearing a hat,

write a formula in first-order logic that says

some smiling person wears a hat.

Which of the following are correct translations?

(A) ∃x. WearingHat(Smiling(x))
(B) ∃x. (Smiling(x) = WearingHat(x))
(C) ∃x. (Smiling(x) ∧ WearingHat(x))
(D) ∃x. (Smiling(x) → WearingHat(x))

Answer at
https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev

Using the predicates

 - Smiling(x), which states that x is smiling, and
 - WearingHat(x), which states that x is wearing a hat,

write a formula in first-order logic that says

some smiling person wears a hat.

Which of the following are correct translations?

(A) ∃x. WearingHat(Smiling(x))
(B) ∃x. (Smiling(x) = WearingHat(x))
(C) ∃x. (Smiling(x) ∧ WearingHat(x))
(D) ∃x. (Smiling(x) → WearingHat(x))

Answer at
https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev

Using the predicates

 - Smiling(x), which states that x is smiling, and
 - WearingHat(x), which states that x is wearing a hat,

write a formula in first-order logic that says

some smiling person wears a hat.

Which of the following are correct translations?

(A) ∃x. Smiling(Person(x))
(B) ∃x. (Smiling(x) = WearingHat(x))
(C) ∃x. (Smiling(x) ∧ WearingHat(x))
(D) ∃x. (Smiling(x) → WearingHat(x))

Answer at
https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev

∃x. (Smiling(x) ∧ WearingHat(x))
∃x. (Smiling(x) → WearingHat(x))

“Some smiling person wears a hat.”

∃x. (Smiling(x) ∧ WearingHat(x))
∃x. (Smiling(x) → WearingHat(x))

“Some smiling person wears a hat.”

∃x. (Smiling(x) ∧ WearingHat(x))
∃x. (Smiling(x) → WearingHat(x))

“Some smiling person wears a hat.”

∃x. (Smiling(x) ∧ WearingHat(x))
∃x. (Smiling(x) → WearingHat(x))

“Some smiling person wears a hat.” False

∃x. (Smiling(x) ∧ WearingHat(x))
∃x. (Smiling(x) → WearingHat(x))

“Some smiling person wears a hat.” False

∃x. (Smiling(x) ∧ WearingHat(x))
∃x. (Smiling(x) → WearingHat(x))

“Some smiling person wears a hat.” False

False

∃x. (Smiling(x) ∧ WearingHat(x))
∃x. (Smiling(x) → WearingHat(x))

“Some smiling person wears a hat.” False

False

True

∃x. (Smiling(x) ∧ WearingHat(x))
∃x. (Smiling(x) → WearingHat(x))

“Some smiling person wears a hat.” False

False

True

∃x. (Smiling(x) ∧ WearingHat(x))
∃x. (Smiling(x) → WearingHat(x))

“Some smiling person wears a hat.” False

False

True

“Some P is a Q”
translates as

∃x. (P(x) ∧ Q(x))

Useful Intuition:

Existentially-quantified statements are
false unless there's a positive example.

∃x. (P(x) ∧ Q(x))

If x is an example, it must
have property P on top of

property Q.

Using the predicates

 - Smiling(x), which states that x is smiling, and
 - WearingHat(x), which states that x is wearing a hat,

write a sentence in first-order logic that says

every smiling person wears a hat.

Which of the following are correct translations?

(A) ∀x. (Smiling(x) ∧ WearingHat(x))
(B) ∀x. (Smiling(x) → WearingHat(x))

Answer at
https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev

∀x. (Smiling(x) ∧ WearingHat(x))
∀x. (Smiling(x) → WearingHat(x))

“Every smiling person wears a hat.”

∀x. (Smiling(x) ∧ WearingHat(x))
∀x. (Smiling(x) → WearingHat(x))

“Every smiling person wears a hat.”

∀x. (Smiling(x) ∧ WearingHat(x))
∀x. (Smiling(x) → WearingHat(x))

“Every smiling person wears a hat.” True

∀x. (Smiling(x) ∧ WearingHat(x))
∀x. (Smiling(x) → WearingHat(x))

“Every smiling person wears a hat.” True

False

∀x. (Smiling(x) ∧ WearingHat(x))
∀x. (Smiling(x) → WearingHat(x))

“Every smiling person wears a hat.” True

False

True

∀x. (Smiling(x) ∧ WearingHat(x))
∀x. (Smiling(x) → WearingHat(x))

“Every smiling person wears a hat.” True

False

True

∀x. (Smiling(x) ∧ WearingHat(x))
∀x. (Smiling(x) → WearingHat(x))

“Every smiling person wears a hat.” True

False

True

“All P's are Q's”
translates as

∀x. (P(x) → Q(x))

Useful Intuition:

Universally-quantified statements are true
unless there's a counterexample.

∀x. (P(x) → Q(x))

If x is a counterexample, it
must have property P but
not have property Q.

Good Pairings
● The ∀ quantifier usually is paired with →.

∀x. (P(x) → Q(x))
● The ∃ quantifier usually is paired with ∧.

∃x. (P(x) ∧ Q(x))
● In the case of ∀, the → connective prevents the

statement from being false when speaking about some
object you don't care about.

● In the case of ∃, the ∧ connective prevents the
statement from being true when speaking about some
object you don't care about.

Quantifiers in the Wild

theorem prover

Next Time
● First-Order Translations

● How do we translate from English into first-order logic?
● Quantifier Orderings

● How do you select the order of quantifiers in first-order
logic formulas?

● Negating Formulas
● How do you mechanically determine the negation of a

first-order formula?
● Expressing Uniqueness

● How do we say there’s just one object of a certain type?

	Slide 1
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 32
	Slide 33
	Slide 34
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199

